Astronomy Stories
It isn’t often that our Capital Science Evening speaker hints at soon-to-be-breaking news right from the stage. Tuesday night, Pierre Cox, Director of the Atacama Large Milimiter/submillimeter...
Explore this Story
The Magellan Telescopes at Carnegie's Las Campanas Observatory in Chile
Washington, DC— An anonymous bequest of $34.8 million will enable Carnegie to continue to play a leading role advancing the frontiers of astronomy and astrophysics. The largest gift to the...
Explore this Story
Artist's concept of the Giant Magellan Telescope courtesy of GMTO
Washington, DC—A Carnegie-led effort secured $205 million toward the completion of the next-generation Giant Magellan Telescope, which is currently being built at our Las Campanas Observatory...
Explore this Story
Artist's conception of JWST. Credit: NASA GSFC/CIL/Adriana Manrique Gutierrez
Pasadena, CA— The first of six projects led by Carnegie-affiliated astronomers will, for the next three days, use the James Webb Space Telescope to make some of the most-accurate measurements...
Explore this Story
Washington, DC—The violent event that likely preceded our Solar System’s formation holds the solution to a longstanding meteorite mystery, says new work from Carnegie’s Alan Boss...
Explore this Story
Los telescopios Magallanes del Observatorio Las Campanas. Crédito: Leon Aslan.
Pasadena, CA- Los ancestros de algunos de los mayores cúmulos de galaxias han estado ocultos a plena vista. Un nuevo trabajo dirigido por Andrew Newman, de Carnegie, demuestra una nueva t...
Explore this Story
Star trails over the Magellan telescopes at Las Campanas courtesy Leon Aslan.
Pasadena, CA— The ancestors of some of the largest galaxy clusters have been hiding in plain sight. New work led by Carnegie’s Andrew Newman demonstrates a new technique for identifying...
Explore this Story
Andrómeda cortesía de la NASA/Bill Cook.
Pasadena, CA- Un análisis detallado de la composición y el movimiento de más de 500 estrellas reveló pruebas concluyentes de una antigua colisión entre Andró...
Explore this Story

Pages

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in...
Explore this Project
The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5. The survey...
Explore this Project
The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array...
Explore this Project
Staff astronomer emeritus Eric Persson headed a group that develops and uses telescope instrumentation to exploit new near-infrared (IR) imaging array detectors. The team built a wide-field survey camera for the du Pont 2.5-meter telescope at Carnegie’s Las Campanas Observatory in Chile...
Meet this Scientist
Staff member emeritus François Schweizer studies galaxy assembly and evolution by observing nearby galaxies, particularly how collisions and mergers affect their properties. His research has added to the awareness that these events are dominant processes in shaping galaxies and determining...
Meet this Scientist
Anthony Piro is the George Ellery Hale Distinguished Scholar in Theoretical Astrophysics at the Carnegie Observatories. He is a theoretical astrophysicist studying compact objects, astrophysical explosions, accretion flows, and stellar dynamics. His expertise is in nuclear physics, thermodynamics,...
Meet this Scientist
You May Also Like...
Pasadena, CA--A team of astronomers has discovered the most distant cluster of red galaxies ever observed using FourStar, a new and powerful near-infrared camera on the 6.5m Magellan Baade Telescope...
Explore this Story
Astronomers have believed since the 1960s that a galaxy dubbed UGC 1382 was a relatively boring, small elliptical galaxy. Now, using a series of multi-wavelength surveys, astronomers, including...
Explore this Story
SN2015J, a very bright and peculiar supernova, which initially did not have a certain home, now has received its happy ending.  Discovered on April 27, 2015, by the Siding Springs Observatory in...
Explore this Story

Explore Carnegie Science

The Magellan Telescopes at Carnegie's Las Campanas Observatory in Chile
September 6, 2022

Washington, DC— An anonymous bequest of $34.8 million will enable Carnegie to continue to play a leading role advancing the frontiers of astronomy and astrophysics. The largest gift to the Institution since it was founded by Andrew Carnegie, this new fund will support staff and instrumentation at the Carnegie Observatories.

“Since George Ellery Hale built the first telescope on Mount Wilson, Carnegie has played a forefront role in some of the most important astronomical discoveries of the modern era,” said Carnegie President Eric D. Isaacs. “This transformative gift will empower new generations of Carnegie astronomers to reveal the physics that underpins

Artist's concept of the Giant Magellan Telescope courtesy of GMTO
August 2, 2022
Washington, DC—A Carnegie-led effort secured $205 million toward the completion of the next-generation Giant Magellan Telescope, which is currently being built at our Las Campanas Observatory in Chile. When completed, the GMT will enable breakthrough astronomy—from revealing the fundamental physics underpinning the cosmos to advancing our ability to search for life on distant worlds.

Last November, the National Academies of Science, Engineering, and Medicine ranked the GMT as a top strategic priority, recommending an injection of federal support to complete its construction and bring about a new era in astronomy. The endorsement was part of the academies’ review of the

Artist's conception of JWST. Credit: NASA GSFC/CIL/Adriana Manrique Gutierrez
July 24, 2022

Pasadena, CA— The first of six projects led by Carnegie-affiliated astronomers will, for the next three days, use the James Webb Space Telescope to make some of the most-accurate measurements ever taken of the chemistry of very early galaxies—studying light that traveled 10 billion years to reach us.

Carnegie’s Gwen Rudie and Allison Strom, formerly a Carnegie-Princeton Postdoctoral Fellow, now a Northwestern professor, are heading up the CECILIA project, which will take extremely accurate measurements from a carefully selected set of ancient galaxies in order to understand their compositions and chart the remarkable growth that they experienced in the universe

June 28, 2022

Washington, DC—The violent event that likely preceded our Solar System’s formation holds the solution to a longstanding meteorite mystery, says new work from Carnegie’s Alan Boss published in The Astrophysical Journal.

The raw material from which our Solar System was constructed was dispersed when the shock wave from an exploding supernova injected material into a cloud of dust and gas, causing it to collapse in on itself. In the aftermath of this event, most of the injected matter was gravitationally drawn into the center of the whirlwind, where the intense buildup of pressure enabled nuclear fusion to commence, and the Sun was born. The young star was

No content in this section.

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs.carnegiescience.edu/CGS/Home.html

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains

Director Emeritus, George Preston has been deciphering the chemical evolution of stars in our Milky Way for a quarter of a century. He and Steve Shectman started this quest using a special technique to conduct a needle-in-the-haystack search for the few, first-generation stars, whose chemical compositions sketch the history of element formation in the galaxy. These earliest stars are very rare and they are characteristically low in heavy metals because of their age. They were made of Big Bang material, mostly hydrogen and helium. It was only later that heavier elements were formed in the nuclear furnaces of newer stars.

 In their first study, Preston and Shectman compiled a

Alan Boss is a theorist and an observational astronomer. His theoretical work focuses on the formation of binary and multiple stars, triggered collapse of the presolar cloud that eventually made  the Solar System, mixing and transport processes in protoplanetary disks, and the formation of gas giant and ice giant protoplanets. His observational works centers on the Carnegie Astrometric Planet Search project, which has been underway for the last decade at Carnegie's Las Campanas Observatory in Chile.

While fragmentation is universally recognized as the dominant formation mechanism for binary and multiple stars, there are still major questions. The most important of these

Like some other Carnegie astronomers, staff associate Jeffrey Crane blends science with technology. His primary interests are instrumentation, the Milky Way and the neighboring Local Group of galaxies, in addition to extrasolar planets. In 2004, then-research associate Crane joined Steve Shectman, Ian Thompson, and the Carnegie team to design the Planet Finder Spectrograph (PFS), now installed and operational on the Magellan Clay telescope.

Radial velocities are the speeds and directions of stars moving away from or toward the Earth.  Extrasolar planet hunters use them to detect the telltale wobbles of stars that are gravitationally tugged by orbiting planets. Astronomical

Josh Simon uses observations of nearby galaxies to study problems related to dark matter, chemical evolution, star formation, and the process of galaxy evolution.

In one area he looks at peculiarly dark galaxies. Interestingly, some galaxies are so dark they glow with the light of just a few hundred Suns. Simon and colleagues have determined that a tiny, very dim galaxy orbiting the Milky Way, called Segue 1, is the darkest galaxy ever found and has the highest dark matter density ever found. His team has also laid to rest a debate about whether Segue 1 really is a galaxy or a globular cluster—a smaller group of stars that lacks dark matter. Their findings make Segue 1 a