
Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching and the impact of temperature and light on the bleaching process.
He also has extensively studied the blue-green algae Chlamydomonas genome and is establishing methods for examining the set of RNA molecules and the function of proteins involved in their photosynthesis and acclimation. He also studies the regulation of sulfur metabolism in green algae and plants.
Grossman and team go beyond the lab as well. They study genetic and DNA sequence diversity among primary producers in hot spring mats and the mats’ ability to go from oxygenated to non-oxygenated conditions. Understanding the physiology and community structure of hot spring microbial mats were probably critical for the early oxygenation of the Earth's atmosphere.
The Grosssman lab is looking toward the future by examining the use of nanoelectrodes and atomic force microscopy to probe the structure and dynamics of the photosynthetic apparatus, and pathways for photosynthetic electron flow in photosynthetic microbes in marine and fresh water environments. One goal of this research is to develop both physical and electrochemical platforms to extract energy from photosynthetic organisms.
Grossman received his B.S. in biology from Brooklyn College and his Ph. D. from Indiana University. Before coming to Carnegie as a staff mameberin 1982, he was a postdoctoral fellow at Rockefeller University. For more see https://dpb.carnegiescience.edu/labs/grossman-lab