Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life arose from the chemical to the biological world; how life emerges in extreme environments; and the origin and distribution of life in the universe  just to name a few topics. In tandem with this expansive Carnegie work, he is also the Clarence Robinson Professor of Earth Science at George Mason University. He has authored more than 350 articles and 20 books on science, history, and music.

 As principal investigator of the Deep Carbon Observatory, Hazen oversees the primary mission of work to promote the transformational understanding of the chemical and biological roles of carbon in Earth's interior—a program in part supported by the Sloan Foundation.

Astrobiology is the search for the origin, distribution, and future of life in the universe. Hazen and the Carnegie team have explored the hypothesis that hydrothermal systems on planets and moons might have contributed to the formation of organic molecules, and thus the origin of life, and they have looked at the cosmochemistry of carbon, the essential element of life.

In work on mineral-molecule interactions, it turns out that the origin of life’s biochemicals have “handedness,” like left and right handiness in people. Hazen and team believe that these so-called chiral mineral surfaces may have played a significant role in the selection and concentration of molecules necessary for life.

Although minerals are necessary for essential tasks, science has assumed that the mineral species found on Earth today are much the same as they were during Earth’s first 550 million years—the Hadean Eon—when life emerged. Hazen found this not to be true. He compiled a list of every plausible mineral species on the Hadean Earth and concludes that no more than 420 different minerals—about 8 percent of the nearly 5,000 species found on Earth today—would have been present at or near Earth’s surface.

 Field observations of microbes recovered from deep drill cores, deep mines, and the ocean floor, coupled with laboratory investigations, reveal that microbial life can exist at conditions of extreme temperatures (to above 110ºC) and pressures (to > 10,000 atmospheres) previous thought impossible. Hazen is interested in research on microbes at such extreme conditions. He also explores the factors that promote the emergence of complex evolving systems.

Hazen received both has B.S. and  S.M in Earth science from MIT and his Ph. D. from Harvard University ,where he was also a research assistant and teaching fellow. He joined the scientific staff at Carnegie in 1978. For more see http://hazen.gl.ciw.edu/

Scientific Area: 

Explore Carnegie Science

Cover art for the SZ4D report
November 7, 2022

Washington, DC—A new report, co-authored by Carnegie’s Diana Roman, presents a plan for an ambitious interdisciplinary initiative aimed at advancing understanding of the processes that trigger earthquakes, tsunamis, landslides, and volcanic eruptions where tectonic plates converge.

Subduction zones are found around the world, mostly in coastal regions where an oceanic tectonic plate dives beneath a continental plate. The resulting geohazards include Earth’s largest earthquakes and tsunamis, volcanic eruptions, and landslides. Many large population centers are situated along subduction zones and are vulnerable to these hazards.

Years in the making, a report

Marilyn Fogel
October 3, 2022

Washington, DC—Isotope geochemist Marilyn Fogel will be posthumously recognized with the American Geophysical Union’s Eunice Newton Foote Medal for Earth-Life Science, which is awarded annually to “an exceptional senior scientist for outstanding creative achievements in research at the intersection of Earth and life sciences.”

Fogel, who died in May, spent 33 years as a Staff Scientist at Carnegie’s Geophysical Laboratory in Washington D.C., now the location of the Institution’s Earth and Planets Laboratory, as well as a short stint as a visiting scholar at Carnegie’s Department of Plant Biology in California, before moving on to positions

Louis and Lore Brown at an annual Carnegie celebration
September 22, 2022

Washington, DC—The estate of the late Carnegie physicist and historian Louis Brown, who died in 2004, and his wife Lore, who died late last year, included a bequest of $4.5 million to support research about the Solar System’s formation and evolution, as well as the planet’s dynamic interior processes.

Lou Brown joined Carnegie in 1961 and, for the next 15 years, headed up the nuclear physics program at the Institution’s former Department of Terrestrial Magnetism, which is now part of our Earth and Planets Laboratory.

Eventually, his work shifted to instrumentation for isotope geology. He was involved with designing and constructing several

Michael Walter
September 7, 2022

Washington, DC—Earth and Planets Laboratory Director Michael Walter, an experimental petrologist who studies deep-Earth minerals and melts to elucidate the formation and evolution of our planet’s dynamic interior, will be honored with the American Geophysical Union’s Normal L. Bowen Award at the organization’s annual Fall Meeting in December.

The Bowen prize is the top recognition for a scientist in AGU’s Volcanology, Geochemistry and Petrology section. It presented each year to an individual who has made “outstanding contributions” to the field, either in the form of a single, groundbreaking paper, or a cumulative set of advancements over

No content in this section.

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed

CALL FOR PROPOSALS

Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas.

Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to foster entirely new directions of research by teams of scientists that ignore departmental boundaries. Up to six adventurous investigations may be funded each year. The period of the award is two

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique to search for these otherwise invisible extra-solar planets, and achieve the highest long-term precision demonstrated by any Southern Hemisphere planet search.

Ana Bonaca is Staff Member at Carnegie Observatories. Her specialty is stellar dynamics and her research aims to uncover the structure and evolution of our galaxy, the Milky Way, especially the dark matter halo that surrounds it. In her research, she uses space- and ground-based telescopes to measure the motions of stars, and constructs numerical experiments to discover how dark matter affected them.

She arrived in September 2021 from Harvard University where she held a prestigious Institute for Theory and Computation Fellowship. 

Bonaca studies how the uneven pull of our galaxy’s gravity affects objects called globular clusters—spheres made up of a million

Peter Gao's research interests include planetary atmospheres; exoplanet characterization; planet formation and evolution; atmosphere-surface-interior interactions; astrobiology; habitability; biosignatures; numerical modeling.

His arrival in September 2021 continued Carnegie's longstanding tradition excellence in exoplanet discovery and research, which is crucial as the field prepares for an onslaught of new data about exoplanetary atmospheres when the next generation of telescopes come online.

Gao has been a part of several exploratory teams that investigated sulfuric acid clouds on Venus, methane on Mars, and the atmospheric hazes of Pluto. He also

Anne Pommier's research is dedicated to understanding how terrestrial planets work, especially the role of silicate and metallic melts in planetary interiors, from the scale of volcanic magma reservoirs to core-scale and planetary-scale processes.

She joined Carnegie in July 2021 from U.C. San Diego’s Scripps Institution of Oceanography, where she investigated the evolution and structure of planetary interiors, including our own Earth and its Moon, as well as Mars, Mercury, and the moon Ganymede.

Pommier’s experimental petrology and mineral physics work are an excellent addition to Carnegie’s longstanding leadership in lab-based mimicry of the

Johanna Teske became the first new staff member to join Carnegie’s newly named Earth and Planets Laboratory (EPL) in Washington, D.C., on September 1, 2020. She has been a NASA Hubble Fellow at the Carnegie Observatories in Pasadena, CA, since 2018. From 2014 to 2017 she was the Carnegie Origins Postdoctoral Fellow—a joint position between Carnegie’s Department of Terrestrial Magnetism (now part of EPL) and the Carnegie Observatories.

Teske is interested in the diversity in exoplanet compositions and the origins of that diversity. She uses observations to estimate exoplanet interior and atmospheric compositions, and the chemical environments of their formation